
CADES Town Hall, November 2019

Jeff Larkin (jlarkin@nvidia.com)

Robert Searles (rsearles@nvidia.com)

INTRODUCTION TO
NVIDIA GPU COMPUTING

mailto:jlarkin@nvidia.com

2

Introduction to NVIDIA GPUs

GPU Computing Fundamentals

What are GPUs? Why and how should I use them?

Introduction to OpenACC

The simplest way to get started.

For More Information

AGENDA

3

INTRODUCTION TO NVIDIA
GPUS

4

ENTERPRISE AUTOGAMING DATA CENTERPRO VISUALIZATION

THE WORLD LEADER IN VISUAL COMPUTING

5

Tesla Accelerates
Discoveries

Using a supercomputer powered by the Tesla

Platform with over 3,000 Tesla accelerators,

University of Illinois scientists performed the first

all-atom simulation of the HIV virus and

discovered the chemical structure of its capsid —

“the perfect target for fighting the infection.”

Without GPUs, the supercomputer would need to

be 5x larger for similar performance.

6

102

103

104

105

106

107

GPU-Computing perf

1.5X per year

Original data up to the year 2010 collected and plotted by M.

Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond,

and C. Batten New plot and data collected for 2010-2015 by K.

Rupp

Single-threaded perf

1.5X per year

1.1X per year

TWO FORCES
SHAPING COMPUTING
For 30 years, the dynamics of Moore’s law held

true. But now CPU scaling is slowing while the

demand for computing power surges ahead.

With AI, machines can learn. AI can solve grand

challenges that have been beyond human

reach. But it must be fueled by massive

compute power.

Accelerated computing is the path forward

beyond Moore’s law, delivering 1,000X

computing performance every 10 years.

40 YEARS OF CPU TREND DATA ALEXNET: THE SPARK OF THE MODERN AI ERA

7

NVIDIA is an accelerated computing

company. It starts with a highly

specialized parallel processor called

the GPU and continues through system

design, system software, algorithms,

and optimized applications.

We leverage a single architecture across our growth

markets — from gaming to transportation to

healthcare — that is supported by 1.2 million

developers today.

ONE ARCHITECTURE

NVIDIA GPU CLOUD

NVIDIA APPLICATION FRAMEWORKS

CUDA

HGX DRIVEDGXRTX

GAMING

PRO VIZ

HPC

AI

TRANSPORTATION HEALTHCARE

ROBOTICS SMART CITY

POWERING THE
WORLD’S FASTEST
SUPERCOMPUTERS
GPU acceleration is the most accessible and energy-

efficient path forward for the world’s most powerful

computers. More than 600 applications support CUDA

today, including the top 15 in HPC.

NVIDIA powers U.S.-based Summit, the world’s fastest

supercomputer, as well as the fastest systems in

Europe and Japan. 27,000 NVIDIA

Volta Tensor Core GPUs accelerate Summit’s

performance to more than 200 petaflops

for HPC and 3 exaops for AI.

9

GPU COMPUTING
FUNDAMENTALS

10

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

11

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

CPU Strengths

• Very large main memory

• Very fast clock speeds

• Latency optimized via large caches

• Small number of threads can run

very quickly

CPU Weaknesses

• Relatively low memory bandwidth

• Cache misses very costly

• Low performance/watt

12

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

GPU Strengths

• High bandwidth main memory

• Latency tolerant via parallelism

• Significantly more compute

resources

• High throughput

• High performance/watt

GPU Weaknesses

• Relatively low memory capacity

• Low per-thread performance

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

13

Speed v. Throughput

Speed Throughput

*Images from Wikimedia Commons via Creative Commons

Which is better depends on your needs…

14

AMDAHL’S LAW

Amdahl’s law is an observation that how much speed-up you
get from parallelizing the code is limited by the remaining
serial part.

Any remaining serial code will reduce the possible speed-up

This is why it’s important to focus on parallelizing more of
your code before optimizing individual parts.

Serialization Limits Performance

0

5

10

15

20

1 8 64 512 4096 32768P
o
te

n
ti

a
l
S
p
e
e
d
-u

p

Number of Processors

Amdahl's Law

25% 50% 75% 90% 95%

15

APPLYING AMDAHL’S LAW

What’s the maximum speed-up that can be obtained by
parallelizing 50% of the code?

(1 / 100% - 50%) = (1 / 1.0 - 0.50) = 2.0X

What’s the maximum speed-up that can be obtained by
parallelizing 25% of the code?

(1 / 100% - 25%) = (1 / 1.0 - 0.25) = 1.3X

What’s the maximum speed-up that can be obtained by
parallelizing 90% of the code?

(1 / 100% - 90%) = (1 / 1.0 - 0.90) = 10.0X

Estimating Potential Speed-up

Maximum Parallel Speed-up

Total Serial Runtime

Total Parallel
Runtime (50%)

Total Parallel
Runtime (25%)

Total Parallel
Runtime (90%)

16

What does Amdahl’s Law teach Us?

It is critical to understand the profile of your code
to predict possible speed-ups.

Even a small amount of serialization can
negatively affect performance.

Prioritize the most time-consuming routines and
any code that forces serialization.

17

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

18

CUDA TOOLKIT
Libraries, Languages and Development Tools for GPU Computing

Programming

Approaches

Development

Environment

Language Support

Programming

Languages

“Drop-in” Acceleration Maximum Flexibility

Nsight Systems Nsight Compute

Compile new

languages to CUDA

FortranC++C

CUDA-GDB

Debugger
CUDA Profiling

Tools Interface

CUDA

MEMCHECK

Ease of use

Compiler DirectivesLibraries

19

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

20

LIBRARIES: EASY, HIGH-QUALITY ACCELERATION

Using libraries enables GPU acceleration without in-depth

knowledge of GPU programming

Many GPU-accelerated libraries follow standard APIs, thus

enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions

encountered in a broad range of applications

NVIDIA libraries are tuned by experts

EASE OF USE

“DROP-IN”

QUALITY

PERFORMANCE

Milind

21

NVIDIA HPC Libraries

Math and Communication

NVSHMEMCUDA Math APIcuFFT

cuSPARSE cuSOLVERcuBLAS cuTENSOR

= A BC *

cuRAND

22

NVIDIA HPC Libraries

Major Initiatives

Extended Features
New libraries & APIs

Performance
Tuning & new algorithms

Multi-GPU
Strong & weak scaling

Single GPU
Tensor Cores

cuTENSOR

cuFFTDx

NVSHMEM

23https://developer.nvidia.com/cublas

GPU-accelerated library for dense linear algebra

DEEP LEARNING

(fully connected layers)

SIESTA (MD)

Scientific Computing

COSMO, GENE,
ELPA…

cuBLAS

Accelerated library with complete BLAS plus extensions

Supports all 152 standard routines for single, double,
complex, and double complex

Supports half-precision (FP16), integer (INT8) matrix and
mixed precision multiplication operations

Batched routines for higher performance on small
problem sizes

Host and device-callable interface

XT interface supports distributed computations across
multiple GPUs

24https://developer.nvidia.com/cusparse

cuSPARSE

Optimized Sparse Matrix Library

Optimized sparse linear algebra BLAS routines for
matrix-vector, matrix-matrix, triangular solve

Support for variety of formats (CSR, COO, block variants)

Incomplete-LU and Cholesky preconditioners

Support for half-precision (fp16) sparse matrix-vector
operations

Sparse Linear Algebra on GPUs NLP
RECOMMENDATION

ENGINES

SEISMIC EXPLORATION CAD/CAM/CAE

COMPUTATIONAL FLUID DYNAMICS

25https://developer.nvidia.com/cusolver

cuSOLVER

Library for Dense and Sparse Direct Solvers

Supports Dense Cholesky, LU, (batched) QR, SVD and
Eigenvalue solvers

Sparse direct solvers & Eigen solvers

Includes a sparse refactorization solver for solving sequences
of matrices with a shared sparsity pattern

Used in a variety of applications such as circuit simulation
and computational fluid dynamics

Linear Solver Library

Sample Applications
• Computer Vision
• CFD
• Newton’s method
• Chemical Kinetics
• Chemistry
• ODEs
• Circuit Simulation

26

Tensor Core Accelerated Linear Solvers

• Q4 2019

• Real & Complex FP32 & FP64
LU Solver

• Coming Soon

• Real & Complex FP32 & FP64
Cholesky Solver

• Coming Soon

• Real & Complex FP 32 & FP64
QR Solver

Mixed-precision Dense Linear Solvers in cuSOLVER

➢ Solve dense linear system by one-sided factorizations

➢ Retain FP64 accuracy with ~3X Tensor Core Acceleration

27

cuTENSOR

A New High Performance CUDA Library for Tensor Primitives

= A BD * + C

Now

• Tensor Contractions and Reductions

• Elementwise Operations

• Mixed Precision Support

• Elementwise Fusion

• Coming Soon

• HMMA Acceleration

• Available in Math Library EA Program

developer.nvidia.com/CUDAMathLibraryEA

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 100 200 300 400 500 600 700 800 900 1000
G

F
L
O

P
s

cuTENSOR vs TBLIS
1000 Random 3D-6D Contractions

cuTENSOR (GV100) TBLIS (2s Xeon Platinum 8168)

28

cuFFT

Current Support

➢ Up to 16 GPUs in a single process

➢ Single and double precision

➢ 1D C2C

➢ 2D/3D C2C, R2C, and C2R

cuBLASMg

Available in CUDA Math Library EA

Program

➢ Single Process Multi GPU GEMM

➢ State of the art, asymptotically

peak performance

MULTI GPU MATH LIBRARIES

0

20000

40000

60000

80000

100000

120000

140000

G
F
L
O

P
s

Matrix Size

FP32 SPMG GEMM Performance

cuBLASMg 4 V100 cuBLASMg 8 V100

4 V100 Peak 8 V100 Peak

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

W
a
ll
 C

lo
c
k
 T

im
e
 [

s]

Number of GPUs

*PDSYEVD performance for 20k Matrix
on DGX-2 Tesla V100

cuSOLVERMg* MAGMA

cuSOLVERMg

CUDA Toolkit 10.1 Update 2

➢ Single Process Multi GPU Symmetric

Eigensolver

➢ Best in class performance

CUDA Toolkit 10.2 (SC’19)

➢ Single Process Multi GPU LU

29https://developer.nvidia.com/cufft

cuFFT
Complete Fast Fourier Transforms Library

COMBUSTION

SIMULATION

SEISMIC

EXPLORATION

OIL & GAS

WELL MODELING
LIFE SCIENCES

Complete Multi-Dimensional FFT Library

“Drop-in” replacement for CPU FFTW library

Real and complex, single- and double-precision data types

Includes 1D, 2D and 3D batched transforms

Support for half-precision (FP16) data types

Supports flexible input and output data layouts

XT interface now supports up to 8 GPUs

30

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

31

SIX WAYS TO SAXPY

Programming Languages for GPU Computing

32

Part of Basic Linear Algebra Subroutines (BLAS) Library

GPU SAXPY in multiple languages and libraries

A menagerie* of possibilities, not a tutorial

𝒛 = 𝛼𝒙 + 𝒚
x, y, z : vector

 : scalar

*technically, a program chrestomathy: http://en.wikipedia.org/wiki/Chrestomathy

SINGLE PRECISION ALPHA X PLUS Y (SAXPY)

33

int N = 1<<20;

...

// Use your choice of blas library

// Perform SAXPY on 1M elements

blas_saxpy(N, 2.0, x, 1, y, 1);

int N = 1<<20;

cublasInit();

cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);

cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements

cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);

cublasShutdown();

cuBLAS LIBRARY
Serial BLAS Code Parallel cuBLAS Code

http://developer.nvidia.com/cublas

You can also call cuBLAS from Fortran,

C++, Python, and other languages

http://developer.nvidia.com/cublas

34

subroutine saxpy(n, a, x, y)

real :: x(:), y(:), a

integer :: n, i

!$acc parallel loop

do i=1,n

y(i) = a*x(i)+y(i)

enddo

end subroutine saxpy

...

! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x_d, y_d)

...

void saxpy(int n,

float a,

float *x,

float *y)

{

#pragma acc parallel loop

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

OpenACC COMPILER DIRECTIVES

Parallel C Code Parallel Fortran Code

http://developer.nvidia.com/openacc or http://openacc.org

http://developer.nvidia.com/openacc
http://openacc.org/

35

void saxpy(int n, float a,

float *x, float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

int N = 1<<20;

x = malloc(N*sizeof(float));

y = malloc(N*sizeof(float));

// Perform SAXPY on 1M elements

saxpy(N, 2.0, x, y);

__global__

void saxpy(int n, float a,

float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

int N = 1<<20;

cudaMallocManaged(&x, N*sizeof(float));

cudaMallocManaged(&y, N*sizeof(float));

// Perform SAXPY on 1M elements

saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);

CUDA C
Standard C Parallel C

http://developer.nvidia.com/cuda-toolkit

http://developer.nvidia.com/cuda-toolkit

36

int N = 1<<20;

std::vector<float> x(N), y(N);

...

// Perform SAXPY on 1M elements

std::transform(x.begin(), x.end(),

y.begin(), y.end(),

2.0f * _1 + _2);

int N = 1<<20;

thrust::host_vector<float> x(N), y(N);

...

thrust::device_vector<float> d_x = x;

thrust::device_vector<float> d_y = y;

// Perform SAXPY on 1M elements

thrust::transform(d_x.begin(), d_x.end(),

d_y.begin(),d_y.begin(),

2.0f * _1 + _2)

THRUST C++ TEMPLATE LIBRARY
Serial C++ Code
with STL and Boost

Parallel C++ Code

http://thrust.github.comwww.boost.org/libs/lambda

http://thrust.github.com/
http://www.boost.org/libs/lambda

37

CUDA FORTRAN

module mymodule contains

attributes(global) subroutine saxpy(n, a, x, y)

real :: x(:), y(:), a

integer :: n, i

attributes(value) :: a, n

i = threadIdx%x+(blockIdx%x-1)*blockDim%x

if (i<=n) y(i) = a*x(i)+y(i)

end subroutine saxpy

end module mymodule

program main

use cudafor; use mymodule

real, device :: x_d(2**20), y_d(2**20)

x_d = 1.0, y_d = 2.0

! Perform SAXPY on 1M elements

call saxpy<<<4096,256>>>(2**20, 2.0, x_d, y_d)

end program main

http://developer.nvidia.com/cuda-fortran

module mymodule contains

subroutine saxpy(n, a, x, y)

real :: x(:), y(:), a

integer :: n, i

do i=1,n

y(i) = a*x(i)+y(i)

enddo

end subroutine saxpy

end module mymodule

program main

use mymodule

real :: x(2**20), y(2**20)

x = 1.0, y = 2.0

! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x, y)

end program main

Standard Fortran Parallel Fortran

http://developer.nvidia.com/cuda-fortran

38

PYTHON
Numba Parallel Python

https://numba.pydata.org

import numpy as np

from numba import vectorize

@vectorize(['float32(float32, float32,

float32)'], target='cuda')

def saxpy(a, x, y):

return a * x + y

N = 1048576

Initialize arrays

A = np.ones(N, dtype=np.float32)

B = np.ones(A.shape, dtype=A.dtype)

C = np.empty_like(A, dtype=A.dtype)

Add arrays on GPU

C = saxpy(2.0, X, Y)

import numpy as np

def saxpy(a, x, y):

return [a * xi + yi

for xi, yi in zip(x, y)]

x = np.arange(2**20, dtype=np.float32)

y = np.arange(2**20, dtype=np.float32)

cpu_result = saxpy(2.0, x, y)

http://numpy.scipy.org

Standard Python

https://numba.pydata.org/
http://numpy.scipy.org/

39

CUDA TRAINING SERIES
COMING IN JANUARY!

INTRODUCTION TO OPENACC

OpenACC is a directives-

based programming

approach to parallel

computing designed for

performance and portability

on CPUs and GPUs for HPC.

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>

}
}

Add Simple Compiler Directive

3 WAYS TO ACCELERATE
APPLICATIONS

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

OpenACC

▪ OpenACC is designed to be portable to many
existing and future parallel platforms

▪ The programmer need not think about specific
hardware details, but rather express the
parallelism in generic terms

▪ An OpenACC program runs on a host
(typically a CPU) that manages one or more
parallel devices (GPUs, etc.). The host and
device(s) are logically thought of as having
separate memories.

Host

Device

Host

Memory
Device

Memory

OPENACC PORTABILITY
Describing a generic parallel machine

Single SourceIncremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

Low Learning Curve

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No reason to learn
low-level details of the
hardware.

LSDalton

Quantum Chemistry
Aarhus University

12X speedup
1 week

PowerGrid

Medical Imaging
University of Illinois

40 days to
2 hours

INCOMP3D

CFD
NC State University

4X speedup

NekCEM

Comp Electromagnetics
Argonne National Lab

2.5X speedup
60% less energy

COSMO

Weather and Climate
MeteoSwiss, CSCS

40X speedup
3X energy efficiency

CloverLeaf

Comp Hydrodynamics
AWE

4X speedup
Single CPU/GPU code

MAESTRO
CASTRO

Astrophysics
Stony Brook University

4.4X speedup
4 weeks effort

FINE/Turbo

CFD
NUMECA

International

10X faster routines
2X faster app

OPENACC SUCCESSES

OPENACC SYNTAX

OPENACC SYNTAX

▪ A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

▪ A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

▪ “acc” informs the compiler that what will come is an OpenACC directive

▪ Directives are commands in OpenACC for altering our code.

▪ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>

EXAMPLE CODE

LAPLACE HEAT TRANSFER
Introduction to lab code - visual

Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal

plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

EXAMPLE: JACOBI ITERATION

▪ Iteratively converges to correct value (e.g. Temperature), by computing new
values at each point from the average of neighboring points.

▪ Common, useful algorithm

▪ Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

JACOBI ITERATION: C CODE
while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

PROFILE-DRIVEN DEVELOPMENT

OPENACC DEVELOPMENT CYCLE
▪ Analyze your code to determine

most likely places needing
parallelization or optimization.

▪ Parallelize your code by starting
with the most time consuming parts
and check for correctness.

▪ Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

Obtain detailed information about how

the code ran.

PROFILING SEQUENTIAL CODE

Profile Your Code

This can include information such as:

▪ Total runtime

▪ Runtime of individual routines

▪ Hardware counters

Identify the portions of code that took

the longest to run. We want to focus on

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext
21.49s

swap
19.04s

PROFILING SEQUENTIAL CODE
CPU Details

▪ We can see that there are two
places that our code is spending
most of its time

▪ 21.49 seconds in the “calcNext”
function

▪ 19.04 seconds in a memcpy
function

▪ The c_mcopy8 that we see is
actually a compiler optimization that
is being applied to our “swap”
function

PROFILING SEQUENTIAL CODE
PGPROF

▪ We are also able to select the
different elements in the CPU
Details by double-clicking to open
the associated source code

▪ Here we have selected the
“calcNext:37” element, which
opened up our code to show the
exact line (line 37) that is
associated with that element

OPENACC PARALLEL DIRECTIVE

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.

gang

gang gang

gang

gang

gang

#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang

gang

gang gang

gang

gang

gang

loop

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}
This means that each
gang will execute the

entire loop

gang

gang gang

gang

gang

gang

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ Use a parallel directive to mark a region of
code where you want parallel execution to occur

▪ This parallel region is marked by curly braces in
C/C++ or a start and end directive in Fortran

▪ The loop directive is used to instruct the
compiler to parallelize the iterations of the next
loop to run across the parallel gangs

C/C++

#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = 0;

}

Fortran

!$acc parallel
!$acc loop
do i = 1, N
a(i) = 0

end do
!$acc end parallel

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ This pattern is so common that you can do all of
this in a single line of code

▪ In this example, the parallel loop directive
applies to the next loop

▪ This directive both marks the region for parallel
execution and distributes the iterations of the
loop.

▪ When applied to a loop with a data dependency,
parallel loop may produce incorrect results

C/C++

#pragma acc parallel loop
for(int i = 0; j < N; i++)
a[i] = 0;

Fortran

!$acc parallel loop
do i = 1, N
a(i) = 0

end do

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive
informs the compiler

which loops to
parallelize.

OPENACC PARALLEL LOOP DIRECTIVE
Parallelizing many loops

▪ To parallelize multiple loops, each loop should
be accompanied by a parallel directive

▪ Each parallel loop can have different loop
boundaries and loop optimizations

▪ Each parallel loop can be parallelized in a
different way

▪ This is the recommended way to parallelize
multiple loops. Attempting to parallelize multiple
loops within the same parallel region may give
performance issues or unexpected results

#pragma acc parallel loop
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc parallel loop
for(int j = 0; j < M; j++)
b[j] = 0;

PARALLELIZE WITH OPENACC PARALLEL LOOP
while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Parallelize first loop nest,

max reduction required.

Parallelize second loop.

We didn’t detail how to
parallelize the loops, just which

loops to parallelize.

BUILDING THE CODE (GPU)

$ pgcc –fast -acc -ta=tesla:managed,cc70 -Minfo=accel laplace2d_uvm.c

main:

63, Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])

Generating implicit copyout(Anew[:])

Generating implicit copy(error)

66, Loop is parallelizable

74, Accelerator kernel generated

Generating Tesla code

75, #pragma acc loop gang /* blockIdx.x */

77, #pragma acc loop vector(128) /* threadIdx.x */

74, Generating implicit copyin(Anew[:])

Generating implicit copyout(A[:])

77, Loop is parallelizable

BUILDING THE CODE (MULTICORE)

$ pgcc –fast -acc -ta=multicore -Minfo=accel laplace2d_uvm.c

main:

63, Generating Multicore code

64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

Generating reduction(max:error)

66, Loop is parallelizable

74, Generating Multicore code

75, #pragma acc loop gang

75, Accelerator restriction: size of the GPU copy of Anew,A is unknown

77, Loop is parallelizable

OPENACC SPEED-UP

1.00X

3.23X

41.80X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

45.00X

SERIAL MULTICORE V100

S
p

e
e

d
-U

p

Speed-up

BUILDING THE CODE (GPU)

$ pgcc –fast -acc -ta=tesla,cc70 -Minfo=accel laplace2d_uvm.c

PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages):

Could not find allocated-variable index for symbol (laplace2d_uvm.c: 63)

PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages):

Could not find allocated-variable index for symbol (laplace2d_uvm.c: 74)

main:

63, Accelerator kernel generated

Generating Tesla code

63, Generating reduction(max:error)

64, #pragma acc loop gang /* blockIdx.x */

66, #pragma acc loop vector(128) /* threadIdx.x */

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

66, Loop is parallelizable

74, Accelerator kernel generated

Generating Tesla code

75, #pragma acc loop gang /* blockIdx.x */

77, #pragma acc loop vector(128) /* threadIdx.x */

75, Accelerator restriction: size of the GPU copy of Anew,A is unknown

77, Loop is parallelizable

OPTIMIZE DATA MOVEMENT

EXPLICIT MEMORY MANAGEMENT

▪ Many parallel accelerators (such as
devices) have a separate memory pool
from the host

▪ These separate memories can become
out-of-sync and contain completely
different data

▪ Transferring between these two memories
can be a very time consuming process

Key problems

CPU

Memory
device

Memory

Shared Cache

$ $ $ $ $ $

$ $ $ $ $ $

CPU

Shared Cache

$ $ $ $ $ $ $ $

device

IO Bus

OPENACC DATA DIRECTIVE

▪ The data directive defines a lifetime
for data on the device

▪ During the region data should be
thought of as residing on the
accelerator

▪ Data clauses allow the programmer
to control the allocation and
movement of data

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data

DATA CLAUSES

copy(list) Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

ARRAY SHAPING

▪ Sometimes the compiler needs help understanding the shape of an array

▪ The first number is the start index of the array

▪ In C/C++, the second number is how much data is to be transferred

▪ In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran

ARRAY SHAPING (CONT.)
Multi-dimensional Array shaping

copy(array(1:N, 1:M))

copy(array[0:N][0:M]) C/C++

Fortran

Both of these examples copy a 2D array to the device

ARRAY SHAPING (CONT.)
Partial Arrays

copy(array(i*N/4:i*N/4+N/4))

copy(array[i*N/4:N/4]) C/C++

Fortran

Both of these examples copy only ¼ of the full array

STRUCTURED DATA DIRECTIVE
Example

#pragma acc data copyin(a[0:N],b[0:N]) copyout(c[0:N])
{
#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}
}

Action

Host Memory Device memory

A B C

Allocate A on
device

Copy A from
CPU to device

A

Allocate B on
device

Copy B from
CPU to device

B

Allocate C on
device

Execute loop on
device

C’

Copy C from
device to CPU

C’

Deallocate C from
device

Deallocate B from
device

Deallocate A from
device

OPTIMIZED DATA MOVEMENT
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Copy A to/from the

accelerator only when

needed.

Copy initial condition of

Anew, but not final value

REBUILD THE CODE
pgcc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c

main:

60, Generating copy(A[:m*n])

Generating copyin(Anew[:m*n])

64, Accelerator kernel generated

Generating Tesla code

64, Generating reduction(max:error)

65, #pragma acc loop gang /* blockIdx.x */

67, #pragma acc loop vector(128) /* threadIdx.x */

67, Loop is parallelizable

75, Accelerator kernel generated

Generating Tesla code

76, #pragma acc loop gang /* blockIdx.x */

78, #pragma acc loop vector(128) /* threadIdx.x */

78, Loop is parallelizable

Now data movement only

happens at our data

region.

OPENACC SPEED-UP

1.00X

3.23X

41.80X
42.99X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

45.00X

50.00X

SERIAL MULTICORE V100 V100 (DATA)

S
p

e
e

d
-U

p

Speed-up

DATA SYNCHRONIZATION

update: Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])

#pragma acc update device(x[0:count])

!$acc update self(x(1:end_index))

!$acc update device(x(1:end_index))

Fortran

C/C++

OPENACC UPDATE DIRECTIVE

BB*

A*A

OPENACC UPDATE DIRECTIVE

A
CPU Memory device Memory

#pragma acc update device(A[0:N])

B*

#pragma acc update self(A[0:N])

The data must exist on
both the CPU and device
for the update directive

to work.

SYNCHRONIZE DATA WITH UPDATE

int* allocate_array(int N){
int* A=(int*) malloc(N*sizeof(int));
#pragma acc enter data create(A[0:N])
return A;

}

void deallocate_array(int* A){
#pragma acc exit data delete(A)
free(A);

}

void initialize_array(int* A, int N){
for(int i = 0; i < N; i++){

A[i] = i;
}
#pragma acc update device(A[0:N])

}

▪ Inside the initialize function we alter the
host copy of ‘A’

▪ This means that after calling initialize the
host and device copy of ‘A’ are out-of-sync

▪ We use the update directive with the
device clause to update the device copy of
‘A’

▪ Without the update directive later compute
regions will use incorrect data.

FURTHER OPTIMIZATIONS

PROFILING GPU CODE (PGPROF)

▪ PGPROF presents far more
information when running on a GPU

▪ We can view CPU Details, GPU
Details, a Timeline, and even do
Analysis of the performance

Using PGPROF to profile GPU code

PROFILING GPU CODE (PGPROF)
Using PGPROF to profile GPU code

▪ MemCpy(HtoD): This includes data
transfers from the Host to the Device
(CPU to GPU)

▪ MemCpy(DtoH): These are data
transfers from the Device to the Host
(GPU to CPU)

▪ Compute: These are our
computational functions. We can
see our calcNext and swap function

LOOP OPTIMIZATIONS

COLLAPSE CLAUSE

▪ collapse(N)

▪ Combine the next N tightly nested loops

▪ Can turn a multidimensional loop nest
into a single-dimension loop

▪ This can be extremely useful for
increasing memory locality, as well as
creating larger loops to expose more
parallelism

#pragma acc parallel loop collapse(2)
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma acc loop reduction(+:tmp)
for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
array[i][j] = 0.0f;

COLLAPSE CLAUSE

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

collapse(2)

#pragma acc parallel loop collapse(2)
for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
array[i][j] = 0.0f;

TILE CLAUSE

▪ tile (x , y , z, ...)

▪ Breaks multidimensional loops into
“tiles” or “blocks”

▪ Can increase data locality in some
codes

▪ Will be able to execute multiple “tiles”
simultaneously

#pragma acc kernels loop tile(32, 32)
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

TILE CLAUSE

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

#pragma acc kernels loop tile(2,2)
for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

tile (2 , 2)

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

GANG WORKER VECTOR

▪ Gang / Worker / Vector defines the
various levels of parallelism we can
achieve with OpenACC

▪ This parallelism is most useful when
parallelizing multi-dimensional loop
nests

▪ OpenACC allows us to define a generic
Gang / Worker / Vector model that will
be applicable to a variety of hardware,
but we fill focus a little bit on a GPU
specific implementation

Workers

Gang

Vector

OPTIMIZED LOOP
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err) tile(32,32)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop tile(32,32)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Create 32x32 tiles of the

loops to better exploit

data locality.

OPENACC SPEED-UP

1.00X

3.23X

41.80X
42.99X

54.25X

0.00X

10.00X

20.00X

30.00X

40.00X

50.00X

60.00X

SERIAL MULTICORE V100 V100 (DATA) V100 (TILE)

S
p

e
e

d
-U

p

Speed-up

GPU LOOP OPTIMIZATION:
RULES OF THUMB

▪ It is rarely a good idea to set the number of gangs in your code, let the compiler
decide.

▪ Most of the time you can effectively tune a loop nest by adjusting only the vector
length.

▪ It is rare to use a worker loop. When the vector length is very short, a worker loop
can increase the parallelism in your gang.

▪ When possible, the vector loop should step through your arrays

▪ Use the device_type clause to ensure that tuning for one architecture doesn’t
negatively affect other architectures.

98

NVIDIA RESOURCES

NVIDIA Developer
https://developer.nvidia.com/

CUDA Toolkit
https://developer.nvidia.com/cuda-toolkit

GPU Accelerated Libraries
https://developer.nvidia.com/gpu-

accelerated-libraries

OpenACC Resources
https://www.openacc.org/resources

PGI Community Edition Compiler
https://www.pgroup.com/products/community.htm

https://developer.nvidia.com/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/gpu-accelerated-libraries
https://www.openacc.org/resources
https://www.pgroup.com/products/community.htm

