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Introduction to NVIDIA GPUs

GPU Computing Fundamentals

What are GPUs? Why and how should I use them?

Introduction to OpenACC

The simplest way to get started.

For More Information

AGENDA
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INTRODUCTION TO NVIDIA 
GPUS
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ENTERPRISE AUTOGAMING DATA CENTERPRO VISUALIZATION

THE WORLD LEADER IN VISUAL COMPUTING
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Tesla Accelerates 
Discoveries

Using a supercomputer powered by the Tesla 

Platform with over 3,000 Tesla accelerators, 

University of Illinois scientists performed the first 

all-atom simulation of the HIV virus and 

discovered the chemical structure of its capsid —

“the perfect target for fighting the infection.”

Without GPUs, the supercomputer would need to 

be 5x larger for similar performance.
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GPU-Computing perf

1.5X per year

Original data up to the year 2010 collected and plotted by M. 

Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, 

and C. Batten New plot and data collected for 2010-2015 by K. 

Rupp

Single-threaded perf

1.5X per year

1.1X per year

TWO FORCES 
SHAPING COMPUTING
For 30 years, the dynamics of Moore’s law held 

true. But now CPU scaling is slowing while the 

demand for computing power surges ahead.

With AI, machines can learn. AI can solve grand 

challenges that have been beyond human 

reach. But it must be fueled by massive 

compute power. 

Accelerated computing is the path forward 

beyond Moore’s law, delivering 1,000X 

computing performance every 10 years.

40 YEARS OF CPU TREND DATA ALEXNET: THE SPARK OF THE MODERN AI ERA
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NVIDIA is an accelerated computing 

company. It starts with a highly 

specialized parallel processor called 

the GPU and continues through system 

design, system software, algorithms, 

and optimized applications.

We leverage a single architecture across our growth 

markets — from gaming to transportation to 

healthcare — that is supported by 1.2 million 

developers today.

ONE ARCHITECTURE

NVIDIA GPU CLOUD

NVIDIA APPLICATION FRAMEWORKS

CUDA

HGX DRIVEDGXRTX

GAMING

PRO VIZ

HPC

AI

TRANSPORTATION HEALTHCARE

ROBOTICS SMART CITY



POWERING THE 
WORLD’S FASTEST 
SUPERCOMPUTERS
GPU acceleration is the most accessible and energy-

efficient path forward for the world’s most powerful 

computers. More than 600 applications support CUDA 

today, including the top 15 in HPC.

NVIDIA powers U.S.-based Summit, the world’s fastest 

supercomputer, as well as the fastest systems in 

Europe and Japan. 27,000 NVIDIA 

Volta Tensor Core GPUs accelerate Summit’s 

performance to more than 200 petaflops 

for HPC and 3 exaops for AI.



9

GPU COMPUTING 
FUNDAMENTALS
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CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for 
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC
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CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for 
Parallel Tasks

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC

CPU Strengths

• Very large main memory

• Very fast clock speeds

• Latency optimized via large caches

• Small number of threads can run 

very quickly

CPU Weaknesses

• Relatively low memory bandwidth

• Cache misses very costly

• Low performance/watt
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CPU
Optimized for 
Serial Tasks

GPU Accelerator
Optimized for 
Parallel Tasks

GPU Strengths

• High bandwidth main memory

• Latency tolerant via parallelism

• Significantly more compute 

resources

• High throughput

• High performance/watt

GPU Weaknesses

• Relatively low memory capacity

• Low per-thread performance

Accelerated Computing
10x Performance & 5x Energy Efficiency for HPC
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Speed v. Throughput

Speed Throughput

*Images from Wikimedia Commons via Creative Commons

Which is better depends on your needs…
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AMDAHL’S LAW

Amdahl’s law is an observation that how much speed-up you 
get from parallelizing the code is limited by the remaining 
serial part.

Any remaining serial code will reduce the possible speed-up

This is why it’s important to focus on parallelizing more of 
your code before optimizing individual parts.

Serialization Limits Performance
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APPLYING AMDAHL’S LAW

What’s the maximum speed-up that can be obtained by 
parallelizing 50% of the code?

( 1 / 100% - 50% ) = (1 / 1.0 - 0.50 ) = 2.0X

What’s the maximum speed-up that can be obtained by 
parallelizing 25% of the code?

( 1 / 100% - 25% ) = (1 / 1.0 - 0.25 ) = 1.3X

What’s the maximum speed-up that can be obtained by 
parallelizing 90% of the code?

( 1 / 100% - 90% ) = (1 / 1.0 - 0.90 ) = 10.0X

Estimating Potential Speed-up

Maximum Parallel Speed-up

Total Serial Runtime

Total Parallel 
Runtime (50%)

Total Parallel 
Runtime (25%)

Total Parallel 
Runtime (90%)
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What does Amdahl’s Law teach Us?

It is critical to understand the profile of your code 
to predict possible speed-ups.

Even a small amount of serialization can 
negatively affect performance.

Prioritize the most time-consuming routines and 
any code that forces serialization.
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3 Ways to Accelerate Applications

Applications

Libraries

Easy to use

Most Performance

Programming 

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives
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CUDA TOOLKIT
Libraries, Languages and Development Tools for GPU Computing

Programming 

Approaches

Development

Environment

Language Support

Programming 

Languages

“Drop-in” Acceleration Maximum Flexibility

Nsight Systems Nsight Compute

Compile new 

languages to CUDA

FortranC++C

CUDA-GDB 

Debugger
CUDA Profiling

Tools Interface

CUDA

MEMCHECK

Ease of use

Compiler DirectivesLibraries
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3 Ways to Accelerate Applications

Applications

Libraries

Easy to use

Most Performance

Programming 

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives
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LIBRARIES: EASY, HIGH-QUALITY ACCELERATION

Using libraries enables GPU acceleration without in-depth 

knowledge of GPU programming

Many GPU-accelerated libraries follow standard APIs, thus 

enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions 

encountered in a broad range of applications 

NVIDIA libraries are tuned by experts 

EASE OF USE

“DROP-IN”

QUALITY

PERFORMANCE

Milind
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NVIDIA HPC Libraries

Math and Communication

NVSHMEMCUDA Math APIcuFFT

cuSPARSE cuSOLVERcuBLAS cuTENSOR

= A BC *

cuRAND
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NVIDIA HPC Libraries

Major Initiatives

Extended Features
New libraries & APIs

Performance
Tuning & new algorithms

Multi-GPU
Strong & weak scaling

Single GPU
Tensor Cores

cuTENSOR

cuFFTDx

NVSHMEM
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GPU-accelerated library for dense linear algebra

DEEP LEARNING

(fully connected layers)

SIESTA (MD)

Scientific Computing

COSMO, GENE, 
ELPA…

cuBLAS

Accelerated library with complete BLAS plus extensions

Supports all 152 standard routines for single, double, 
complex, and double complex

Supports half-precision (FP16), integer (INT8) matrix and 
mixed precision multiplication operations

Batched routines for higher performance on small 
problem sizes

Host and device-callable interface

XT interface supports distributed computations across 
multiple GPUs
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cuSPARSE

Optimized Sparse Matrix Library

Optimized sparse linear algebra BLAS routines for
matrix-vector, matrix-matrix, triangular solve

Support for variety of formats (CSR, COO, block variants)

Incomplete-LU and Cholesky preconditioners

Support for half-precision (fp16) sparse matrix-vector 
operations

Sparse Linear Algebra on GPUs NLP
RECOMMENDATION 

ENGINES

SEISMIC EXPLORATION CAD/CAM/CAE

COMPUTATIONAL FLUID DYNAMICS
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cuSOLVER

Library for Dense and Sparse Direct Solvers

Supports Dense Cholesky, LU, (batched) QR, SVD and 
Eigenvalue solvers

Sparse direct solvers & Eigen solvers

Includes a sparse refactorization solver for solving sequences 
of matrices with a shared sparsity pattern

Used in a variety of applications such as circuit simulation 
and computational fluid dynamics

Linear Solver Library

Sample Applications 
• Computer Vision
• CFD
• Newton’s method
• Chemical Kinetics
• Chemistry
• ODEs
• Circuit Simulation
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Tensor Core Accelerated Linear Solvers

• Q4 2019

• Real & Complex FP32 & FP64
LU Solver

• Coming Soon

• Real & Complex FP32 & FP64
Cholesky Solver

• Coming Soon

• Real & Complex FP 32 & FP64
QR Solver

Mixed-precision Dense Linear Solvers in cuSOLVER

➢ Solve dense linear system by one-sided factorizations

➢ Retain FP64 accuracy with ~3X Tensor Core Acceleration 
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cuTENSOR

A New High Performance CUDA Library for Tensor Primitives

= A BD *        + C

Now

• Tensor Contractions and Reductions

• Elementwise Operations

• Mixed Precision Support

• Elementwise Fusion

• Coming Soon

• HMMA Acceleration

• Available in Math Library EA Program

developer.nvidia.com/CUDAMathLibraryEA
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cuFFT

Current Support

➢ Up to 16 GPUs in a single process

➢ Single and double precision

➢ 1D C2C

➢ 2D/3D C2C, R2C, and C2R

cuBLASMg

Available in CUDA Math Library EA 

Program

➢ Single Process Multi GPU GEMM 

➢ State of the art, asymptotically 

peak performance

MULTI GPU MATH LIBRARIES
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cuSOLVERMg* MAGMA

cuSOLVERMg

CUDA Toolkit 10.1 Update 2

➢ Single Process Multi GPU Symmetric 

Eigensolver 

➢ Best in class performance

CUDA Toolkit 10.2 (SC’19)

➢ Single Process Multi GPU LU
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cuFFT
Complete Fast Fourier Transforms Library

COMBUSTION

SIMULATION

SEISMIC 

EXPLORATION

OIL & GAS 

WELL MODELING
LIFE SCIENCES

Complete Multi-Dimensional FFT Library

“Drop-in” replacement for CPU FFTW library

Real and complex, single- and double-precision data types

Includes 1D, 2D and 3D batched transforms

Support for half-precision (FP16) data types

Supports flexible input and output data layouts

XT interface now supports up to 8 GPUs
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3 Ways to Accelerate Applications

Applications

Libraries

Easy to use

Most Performance

Programming 

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives
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SIX WAYS TO SAXPY

Programming Languages for GPU Computing
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Part of Basic Linear Algebra Subroutines (BLAS) Library

GPU SAXPY in multiple languages and libraries

A menagerie* of possibilities, not a tutorial

𝒛 = 𝛼𝒙 + 𝒚
x, y, z : vector

 : scalar

*technically, a program chrestomathy: http://en.wikipedia.org/wiki/Chrestomathy

SINGLE PRECISION ALPHA X PLUS Y (SAXPY)
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int N = 1<<20;

...

// Use your choice of blas library

// Perform SAXPY on 1M elements

blas_saxpy(N, 2.0, x, 1, y, 1);

int N = 1<<20;

cublasInit();

cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);

cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements

cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);

cublasShutdown();

cuBLAS LIBRARY
Serial BLAS Code Parallel cuBLAS Code

http://developer.nvidia.com/cublas

You can also call cuBLAS from Fortran, 

C++, Python, and other languages

http://developer.nvidia.com/cublas
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subroutine saxpy(n, a, x, y)

real :: x(:), y(:), a

integer :: n, i

!$acc parallel loop

do i=1,n

y(i) = a*x(i)+y(i)

enddo

end subroutine saxpy

...

! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x_d, y_d)

...

void saxpy(int n, 

float a, 

float *x, 

float *y)

{

#pragma acc parallel loop

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

OpenACC COMPILER DIRECTIVES

Parallel C Code Parallel Fortran Code

http://developer.nvidia.com/openacc or http://openacc.org

http://developer.nvidia.com/openacc
http://openacc.org/


35

void saxpy(int n, float a, 

float *x, float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

int N = 1<<20;

x = malloc(N*sizeof(float));

y = malloc(N*sizeof(float));

// Perform SAXPY on 1M elements

saxpy(N, 2.0, x, y);

__global__ 

void saxpy(int n, float a, 

float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

int N = 1<<20;

cudaMallocManaged(&x, N*sizeof(float));

cudaMallocManaged(&y, N*sizeof(float));

// Perform SAXPY on 1M elements

saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);

CUDA C
Standard C Parallel C

http://developer.nvidia.com/cuda-toolkit

http://developer.nvidia.com/cuda-toolkit
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int N = 1<<20;

std::vector<float> x(N), y(N);

...

// Perform SAXPY on 1M elements

std::transform(x.begin(), x.end(),

y.begin(), y.end(),

2.0f * _1 + _2);

int N = 1<<20;

thrust::host_vector<float> x(N), y(N);

...

thrust::device_vector<float> d_x = x;

thrust::device_vector<float> d_y = y;

// Perform SAXPY on 1M elements

thrust::transform(d_x.begin(), d_x.end(), 

d_y.begin(),d_y.begin(), 

2.0f * _1 + _2)

THRUST C++ TEMPLATE LIBRARY
Serial C++ Code
with STL and Boost

Parallel C++ Code

http://thrust.github.comwww.boost.org/libs/lambda

http://thrust.github.com/
http://www.boost.org/libs/lambda


37

CUDA FORTRAN

module mymodule contains

attributes(global) subroutine saxpy(n, a, x, y)

real :: x(:), y(:), a

integer :: n, i

attributes(value) :: a, n

i = threadIdx%x+(blockIdx%x-1)*blockDim%x

if (i<=n) y(i) = a*x(i)+y(i)

end subroutine saxpy

end module mymodule

program main

use cudafor; use mymodule

real, device :: x_d(2**20), y_d(2**20)

x_d = 1.0, y_d = 2.0  

! Perform SAXPY on 1M elements

call saxpy<<<4096,256>>>(2**20, 2.0, x_d, y_d)

end program main

http://developer.nvidia.com/cuda-fortran

module mymodule contains

subroutine saxpy(n, a, x, y)

real :: x(:), y(:), a

integer :: n, i

do i=1,n

y(i) = a*x(i)+y(i)

enddo

end subroutine saxpy

end module mymodule

program main

use mymodule

real :: x(2**20), y(2**20)

x = 1.0, y = 2.0

! Perform SAXPY on 1M elements

call saxpy(2**20, 2.0, x, y)

end program main

Standard Fortran Parallel Fortran

http://developer.nvidia.com/cuda-fortran
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PYTHON
Numba Parallel Python

https://numba.pydata.org

import numpy as np

from numba import vectorize

@vectorize(['float32(float32, float32, 

float32)'], target='cuda')

def saxpy(a, x, y):

return a * x + y

N = 1048576

# Initialize arrays

A = np.ones(N, dtype=np.float32)

B = np.ones(A.shape, dtype=A.dtype)

C = np.empty_like(A, dtype=A.dtype)

# Add arrays on GPU

C = saxpy(2.0, X, Y)

import numpy as np

def saxpy(a, x, y):

return [a * xi + yi

for xi, yi in zip(x, y)]

x = np.arange(2**20, dtype=np.float32)

y = np.arange(2**20, dtype=np.float32)

cpu_result = saxpy(2.0, x, y)

http://numpy.scipy.org

Standard Python

https://numba.pydata.org/
http://numpy.scipy.org/
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CUDA TRAINING SERIES 
COMING IN JANUARY!



INTRODUCTION TO OPENACC



OpenACC is a directives-

based programming 

approach to parallel 

computing designed for 

performance and portability 

on CPUs and GPUs for HPC.  

main()
{
<serial code>
#pragma acc kernels
{  
<parallel code>

}
}

Add Simple Compiler Directive



3 WAYS TO ACCELERATE 
APPLICATIONS

Applications

Libraries

Easy to use

Most Performance

Programming 

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

OpenACC



▪ OpenACC is designed to be portable to many 
existing and future parallel platforms

▪ The programmer need not think about specific 
hardware details, but rather express the 
parallelism in generic terms

▪ An OpenACC program runs on a host
(typically a CPU) that manages one or more 
parallel devices (GPUs, etc.). The host and 
device(s) are logically thought of as having 
separate memories.

Host

Device

Host 

Memory
Device 

Memory

OPENACC PORTABILITY
Describing a generic parallel machine



Single SourceIncremental

OPENACC

▪ Maintain existing 
sequential code

▪ Add annotations to 
expose parallelism

▪ After verifying 
correctness, annotate 
more of the code

▪ Rebuild the same code 
on multiple 
architectures

▪ Compiler determines 
how to parallelize for 
the desired machine

▪ Sequential code is 
maintained

Low Learning Curve

▪ OpenACC is meant to 
be easy to use, and 
easy to learn

▪ Programmer remains 
in familiar C, C++, or 
Fortran

▪ No reason to learn 
low-level details of the 
hardware.



LSDalton

Quantum Chemistry
Aarhus University 

12X speedup 
1 week

PowerGrid

Medical Imaging
University of Illinois

40 days to
2 hours

INCOMP3D

CFD
NC State University

4X speedup

NekCEM

Comp Electromagnetics
Argonne National Lab

2.5X speedup
60% less energy

COSMO

Weather and Climate
MeteoSwiss, CSCS 

40X speedup
3X energy efficiency

CloverLeaf

Comp Hydrodynamics
AWE

4X speedup
Single CPU/GPU code 

MAESTRO
CASTRO

Astrophysics
Stony Brook University

4.4X speedup
4 weeks effort

FINE/Turbo 

CFD
NUMECA 

International

10X faster routines
2X faster app

OPENACC SUCCESSES



OPENACC SYNTAX



OPENACC SYNTAX

▪ A pragma in C/C++ gives instructions to the compiler on how to compile the code. 
Compilers that do not understand a particular pragma can freely ignore it.

▪ A directive in Fortran is a specially formatted comment that likewise instructions the 
compiler in it compilation of the code and can be freely ignored.

▪ “acc” informs the compiler that what will come is an OpenACC directive

▪ Directives are commands in OpenACC for altering our code.

▪ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>



EXAMPLE CODE



LAPLACE HEAT TRANSFER
Introduction to lab code - visual

Very Hot Room Temp

We will observe a simple simulation 
of heat distributing across a metal 

plate.

We will apply a consistent heat to 
the top of the plate.

Then, we will simulate the heat 
distributing across the plate.



EXAMPLE: JACOBI ITERATION

▪ Iteratively converges to correct value (e.g. Temperature), by computing new 
values at each point from the average of neighboring points.  

▪ Common, useful algorithm 

▪ Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4



JACOBI ITERATION: C CODE
while ( err > tol && iter < iter_max ) {

err=0.0;

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Iterate until converged

Iterate across matrix 

elements

Calculate new value from 

neighbors

Compute max error for 

convergence

Swap input/output arrays



PROFILE-DRIVEN DEVELOPMENT



OPENACC DEVELOPMENT CYCLE
▪ Analyze your code to determine 

most likely places needing 
parallelization or optimization.

▪ Parallelize your code by starting 
with the most time consuming parts 
and check for correctness.

▪ Optimize your code to improve 
observed speed-up from 
parallelization.

Analyze

ParallelizeOptimize

Analyze



Obtain detailed information about how 

the code ran.

PROFILING SEQUENTIAL CODE

Profile Your Code

This can include information such as:

▪ Total runtime

▪ Runtime of individual routines

▪ Hardware counters

Identify the portions of code that took 

the longest to run. We want to focus on 

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext 
21.49s

swap         
19.04s



PROFILING SEQUENTIAL CODE
CPU Details

▪ We can see that there are two 
places that our code is spending 
most of its time

▪ 21.49 seconds in the “calcNext” 
function

▪ 19.04 seconds in a memcpy
function

▪ The c_mcopy8 that we see is 
actually a compiler optimization that 
is being applied to our “swap” 
function



PROFILING SEQUENTIAL CODE
PGPROF

▪ We are also able to select the 
different elements in the CPU 
Details by double-clicking to open 
the associated source code

▪ Here we have selected the 
“calcNext:37” element, which 
opened up our code to show the 
exact line (line 37) that is 
associated with that element



OPENACC PARALLEL DIRECTIVE



OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the 
parallel directive, the 
compiler will generate 

1 or more parallel 
gangs, which execute 

redundantly.

gang

gang gang

gang

gang

gang



#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be 
executed redundantly 

on each gang

gang

gang gang

gang

gang

gang

loop

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p



#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}
This means that each 
gang will execute the 

entire loop

gang

gang gang

gang

gang

gang



OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ Use a parallel directive to mark a region of 
code where you want parallel execution to occur

▪ This parallel region is marked by curly braces in 
C/C++ or a start and end directive in Fortran

▪ The loop directive is used to instruct the 
compiler to parallelize the iterations of the next 
loop to run across the parallel gangs

C/C++

#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = 0;

}

Fortran

!$acc parallel
!$acc loop
do i = 1, N
a(i) = 0

end do
!$acc end parallel



OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ This pattern is so common that you can do all of 
this in a single line of code

▪ In this example, the parallel loop directive 
applies to the next loop

▪ This directive both marks the region for parallel 
execution and distributes the iterations of the 
loop.

▪ When applied to a loop with a data dependency, 
parallel loop may produce incorrect results

C/C++

#pragma acc parallel loop
for(int i = 0; j < N; i++)
a[i] = 0;

Fortran

!$acc parallel loop
do i = 1, N
a(i) = 0

end do



#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive 
informs the compiler 

which loops to 
parallelize.



OPENACC PARALLEL LOOP DIRECTIVE
Parallelizing many loops

▪ To parallelize multiple loops, each loop should 
be accompanied by a parallel directive

▪ Each parallel loop can have different loop 
boundaries and loop optimizations

▪ Each parallel loop can be parallelized in a 
different way

▪ This is the recommended way to parallelize 
multiple loops. Attempting to parallelize multiple 
loops within the same parallel region may give 
performance issues or unexpected results

#pragma acc parallel loop
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc parallel loop
for(int j = 0; j < M; j++)
b[j] = 0;



PARALLELIZE WITH OPENACC PARALLEL LOOP
while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Parallelize first loop nest, 

max reduction required.

Parallelize second loop.

We didn’t detail how to 
parallelize the loops, just which

loops to parallelize.



BUILDING THE CODE (GPU)

$ pgcc –fast -acc -ta=tesla:managed,cc70 -Minfo=accel laplace2d_uvm.c

main:

63, Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])

Generating implicit copyout(Anew[:])

Generating implicit copy(error)

66, Loop is parallelizable

74, Accelerator kernel generated

Generating Tesla code

75, #pragma acc loop gang /* blockIdx.x */

77, #pragma acc loop vector(128) /* threadIdx.x */

74, Generating implicit copyin(Anew[:])

Generating implicit copyout(A[:])

77, Loop is parallelizable



BUILDING THE CODE (MULTICORE)

$ pgcc –fast -acc -ta=multicore -Minfo=accel laplace2d_uvm.c

main:

63, Generating Multicore code

64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

Generating reduction(max:error)

66, Loop is parallelizable

74, Generating Multicore code

75, #pragma acc loop gang

75, Accelerator restriction: size of the GPU copy of Anew,A is unknown

77, Loop is parallelizable
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BUILDING THE CODE (GPU)

$ pgcc –fast -acc -ta=tesla,cc70 -Minfo=accel laplace2d_uvm.c

PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages): 

Could not find allocated-variable index for symbol (laplace2d_uvm.c: 63)

PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages): 

Could not find allocated-variable index for symbol (laplace2d_uvm.c: 74)

main:

63, Accelerator kernel generated

Generating Tesla code

63, Generating reduction(max:error)

64, #pragma acc loop gang /* blockIdx.x */

66, #pragma acc loop vector(128) /* threadIdx.x */

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

66, Loop is parallelizable

74, Accelerator kernel generated

Generating Tesla code

75, #pragma acc loop gang /* blockIdx.x */

77, #pragma acc loop vector(128) /* threadIdx.x */

75, Accelerator restriction: size of the GPU copy of Anew,A is unknown

77, Loop is parallelizable



OPTIMIZE DATA MOVEMENT



EXPLICIT MEMORY MANAGEMENT

▪ Many parallel accelerators (such as 
devices) have a separate memory pool 
from the host

▪ These separate memories can become 
out-of-sync and contain completely 
different data

▪ Transferring between these two memories 
can be a very time consuming process

Key problems

CPU 

Memory
device  

Memory

Shared Cache

$ $ $ $ $ $

$ $ $ $ $ $

CPU

Shared Cache

$ $ $ $ $ $ $ $

device

IO Bus



OPENACC DATA DIRECTIVE

▪ The data directive defines a lifetime 
for data on the device

▪ During the region data should be 
thought of as residing on the 
accelerator

▪ Data clauses allow the programmer 
to control the allocation and 
movement of data

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data



DATA CLAUSES

copy( list ) Allocates memory on GPU and copies data from host to GPU when 
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a 
logical default to input, modify and return the data.

copyin( list ) Allocates memory on GPU and copies data from host to GPU when 
entering region.

Principal use: Think of this like an array that you would use as  just an 
input to a subroutine.

copyout( list ) Allocates memory on GPU and copies data to the host when exiting 
region.

Principal use: A result that isn’t overwriting the input data structure.

create( list ) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.



ARRAY SHAPING

▪ Sometimes the compiler needs help understanding the shape of an array

▪ The first number is the start index of the array

▪ In C/C++, the second number is how much data is to be transferred

▪ In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran



ARRAY SHAPING (CONT.)
Multi-dimensional Array shaping

copy(array(1:N, 1:M))

copy(array[0:N][0:M]) C/C++

Fortran

Both of these examples copy a 2D array to the device



ARRAY SHAPING (CONT.)
Partial Arrays

copy(array(i*N/4:i*N/4+N/4))

copy(array[i*N/4:N/4]) C/C++

Fortran

Both of these examples copy only ¼ of the full array



STRUCTURED DATA DIRECTIVE
Example

#pragma acc data copyin(a[0:N],b[0:N]) copyout(c[0:N])
{
#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}
}

Action

Host Memory Device memory

A B C

Allocate A on
device

Copy A from
CPU to device

A

Allocate B on
device

Copy B from
CPU to device

B

Allocate C on
device

Execute loop on
device

C’

Copy C from
device to CPU

C’

Deallocate C from
device

Deallocate B from
device

Deallocate A from
device



OPTIMIZED DATA MOVEMENT
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err) 

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Copy A to/from the 

accelerator only when 

needed.

Copy initial condition of 

Anew, but not final value 



REBUILD THE CODE
pgcc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c

main:

60, Generating copy(A[:m*n])

Generating copyin(Anew[:m*n])

64, Accelerator kernel generated

Generating Tesla code

64, Generating reduction(max:error)

65, #pragma acc loop gang /* blockIdx.x */

67, #pragma acc loop vector(128) /* threadIdx.x */

67, Loop is parallelizable

75, Accelerator kernel generated

Generating Tesla code

76, #pragma acc loop gang /* blockIdx.x */

78, #pragma acc loop vector(128) /* threadIdx.x */

78, Loop is parallelizable

Now data movement only 

happens at our data 

region.
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DATA SYNCHRONIZATION



update:  Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])

#pragma acc update device(x[0:count])

!$acc update self(x(1:end_index))

!$acc update device(x(1:end_index))

Fortran

C/C++

OPENACC UPDATE DIRECTIVE



BB*

A*A

OPENACC UPDATE DIRECTIVE

A
CPU Memory device Memory

#pragma acc update device(A[0:N])

B*

#pragma acc update self(A[0:N])

The data must exist on 
both the CPU and device 
for the update directive 

to work.



SYNCHRONIZE DATA WITH UPDATE

int* allocate_array(int N){
int* A=(int*) malloc(N*sizeof(int));
#pragma acc enter data create(A[0:N])
return A;

}

void deallocate_array(int* A){
#pragma acc exit data delete(A)
free(A);

}

void initialize_array(int* A, int N){
for(int i = 0; i < N; i++){

A[i] = i;
}
#pragma acc update device(A[0:N])

}

▪ Inside the initialize function we alter the 
host copy of ‘A’

▪ This means that after calling initialize the 
host and device copy of ‘A’ are out-of-sync

▪ We use the update directive with the 
device clause to update the device copy of 
‘A’

▪ Without the update directive later compute 
regions will use incorrect data.



FURTHER OPTIMIZATIONS



PROFILING GPU CODE (PGPROF)

▪ PGPROF presents far more 
information when running on a GPU

▪ We can view CPU Details, GPU 
Details, a Timeline, and even do 
Analysis of the performance

Using PGPROF to profile GPU code



PROFILING GPU CODE (PGPROF)
Using PGPROF to profile GPU code

▪ MemCpy(HtoD): This includes data 
transfers from the Host to the Device 
(CPU to GPU)

▪ MemCpy(DtoH): These are data 
transfers from the Device to the Host 
(GPU to CPU)

▪ Compute: These are our 
computational functions. We can 
see our calcNext and swap function



LOOP OPTIMIZATIONS



COLLAPSE CLAUSE

▪ collapse( N )

▪ Combine the next N tightly nested loops

▪ Can turn a multidimensional loop nest 
into a single-dimension loop

▪ This can be extremely useful for 
increasing memory locality, as well as 
creating larger loops to expose more 
parallelism

#pragma acc parallel loop collapse(2)
for( i = 0; i < size; i++ ) 
for( j = 0; j < size; j++ )
double tmp = 0.0f;
#pragma acc loop reduction(+:tmp)
for( k = 0; k < size; k++ )
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;



for( i = 0; i < 4; i++ ) 
for( j = 0; j < 4; j++ )
array[i][j] = 0.0f;

COLLAPSE CLAUSE

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

collapse( 2 )

#pragma acc parallel loop collapse(2)
for( i = 0; i < 4; i++ ) 
for( j = 0; j < 4; j++ )
array[i][j] = 0.0f;



TILE CLAUSE

▪ tile ( x , y , z, ...)

▪ Breaks multidimensional loops into 
“tiles” or “blocks”

▪ Can increase data locality in some 
codes

▪ Will be able to execute multiple “tiles” 
simultaneously

#pragma acc kernels loop tile(32, 32)
for( i = 0; i < size; i++ ) 
for( j = 0; j < size; j++ ) 
for( k = 0; k < size; k++ )
c[i][j] += a[i][k] * b[k][j];



TILE CLAUSE

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

#pragma acc kernels loop tile(2,2)
for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

tile ( 2 , 2 )

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)



GANG WORKER VECTOR

▪ Gang / Worker / Vector defines the 
various levels of parallelism we can 
achieve with OpenACC

▪ This parallelism is most useful when 
parallelizing multi-dimensional loop 
nests

▪ OpenACC allows us to define a generic 
Gang / Worker / Vector model that will 
be applicable to a variety of hardware, 
but we fill focus a little bit on a GPU 
specific implementation

Workers

Gang

Vector



OPTIMIZED LOOP
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])

while ( err > tol && iter < iter_max ) {

err=0.0;

#pragma acc parallel loop reduction(max:err) tile(32,32)

for( int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop tile(32,32)

for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];      

}

}

iter++;

}

Create 32x32 tiles of the 

loops to better exploit 

data locality.
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GPU LOOP OPTIMIZATION: 
RULES OF THUMB

▪ It is rarely a good idea to set the number of gangs in your code, let the compiler 
decide.

▪ Most of the time you can effectively tune a loop nest by adjusting only the vector 
length.

▪ It is rare to use a worker loop. When the vector length is very short, a worker loop 
can increase the parallelism in your gang. 

▪ When possible, the vector loop should step through your arrays 

▪ Use the device_type clause to ensure that tuning for one architecture doesn’t 
negatively affect other architectures.
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NVIDIA RESOURCES

NVIDIA Developer
https://developer.nvidia.com/

CUDA Toolkit
https://developer.nvidia.com/cuda-toolkit

GPU Accelerated Libraries
https://developer.nvidia.com/gpu-

accelerated-libraries

OpenACC Resources
https://www.openacc.org/resources

PGI Community Edition Compiler
https://www.pgroup.com/products/community.htm

https://developer.nvidia.com/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/gpu-accelerated-libraries
https://www.openacc.org/resources
https://www.pgroup.com/products/community.htm



